- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Battleman, Zachary (1)
-
Heule, Marijn_J H (1)
-
Reeves, Joseph E (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
Berg, Jeremias (1)
-
Nordström, Jakob (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Berg, Jeremias; Nordström, Jakob (Ed.)Satisfiability solvers have been instrumental in tackling hard problems, including mathematical challenges that require years of computation. A key obstacle in efficiently solving such problems lies in effectively partitioning them into many, frequently millions of subproblems. Existing automated partitioning techniques, primarily based on lookahead methods, perform well on some instances but fail to generate effective partitions for many others. This paper introduces a powerful partitioning approach that leverages prefixes of proofs derived from conflict-driven clause-learning solvers. This method enables non-experts to harness the power of massively parallel SAT solving for their problems. We also propose a semantically-driven partitioning technique tailored for problems with large cardinality constraints, which frequently arise in optimization tasks. We evaluate our methods on diverse benchmarks, including combinatorial problems and formulas from SAT and MaxSAT competitions. Our results demonstrate that these techniques outperform existing partitioning strategies in many cases, offering improved scalability and efficiency.more » « less
An official website of the United States government
